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The minimum Reynolds number for a turbulent 
boundary layer and the selection of a transition device 

By J. H. PRESTON 
Depurtmen f of Fhid Mechanics, University of Liverpool 

(Rrcricied 22 yuly 1957) 

SUMMARY 
In  the case of turbulent flow in a pipe there is a lower 

experimental number to the Reynolds limit for which fully 
developed turbulent flow occurs. From the similarity and close 
agreement of the curves showing the coefficient of skin friction cf 
as a function of the Reynolds number Re (based on the momentum 
thickness 0) for the circular pipe and flat plate, it is suggested that 
there should be a lower limit to R, for fully developed turbulent 
flow on a flat plate. Rather limited experimental data confirm 
this and place the lower limit at R, = 320. The choice and size 
of transition device is examined in relation to this minimum Re 
and an approximate theory leads to a ‘ wire’ Reynolds number 
in fair agreement with experience. 

1. INTRODUCTION 
In the literature it is common to find a curve depicting the turbulent 

skin friction coefficient cf of a flat plate as a function of the Reynolds 
number R, based on the distance x from the leading edge. It is assumed’ 
that transition occurs at the leading edge and that the boundary layer has 
zero thickness there, i.e. Re = 0. This is an assumption that has a certain 
analytical convenience, but it has dangers for the experimenter and the 
engineer. The former is tempted to induce transition at the leading edge 
by means of a wire or other device without giving much thought as to what 
are the real conditions just downstream of it, whilst the latter makes 
estimates of drag for this assumed state which may be considerably in 
error at low values of R,. 

In this connection the recent paper by Dutton (1956) on the turbulent 
boundary layer of a flat plate brings out clearly the marked effect of the size 
and type of transition device on the distribution of cf and Ro considered 
as functions of R,. However, Dutton finds cf to be an approximately 
unique function of Re and independent of the transition device used. 
This is consistent with the assumption of universal ‘inner’ and ‘outer’ 
laws for the velocity distribution which has been the basis of important 
papers by Landweber (1953) and by Coles (1954) and will also be used 
in this paper. 
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In  this note, with the aid of pipe flow results and the results obtained by 
Dutton and earlier investigators on a flat plate, it will be suggested that 
there is a lower experimental limit to the value of RB for the turbulent 
boundary layer of a flat plate as for turbulent flow in a pipe. Theoretical 
support for this suggestion is given and the functions of a transition device in 
relation to this idea of a lower limit are then considered. 

2. FLOW IN CIRCULAR PIPES . 

Figure 1 shows Nikuradse’s (1932, 1933) results for T w / ( & p u m )  as a 
function of R = Umd/v and the roughness ratio d / 2 ~ ,  where Urn is the 
mean velocity in the pipe, d is the pipe diameter, T~ is the skin friction, 
and E is the roughness height. As R is decreased, the various curves tend 
to that for the smooth pipe (turbulent flow) with the exception of the one 
for the largest roughness d / 2 ~  = 15. At a value of log,,R of about 3.65, 
all the curves, which have now merged into one, travel down a common 
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Figure 1.  Resistance of rough pipes (after Nikuradse). 

transition curve which joins the curve for laminar flow at log,, R = 3.32. 
This appears to be the maximum value of R for laminar flow with very 
disturbed entry conditions and, even with comparatively large closely 
packed roughness, the skin friction has the laminar flow value at Reynolds 
numbers below this critical value. 

Now the significant point from the standpoint of the present note is 
that it is impossible to obtain results which would extend the smooth pipe 
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(turbulent flow) curve to values of log,, R < 3.65 or R < 4-47 x lo3, and 
this is the lowest Reynolds number for fully developed turbulent flow in 
a pipe. 

Defining the momentum thickness for axisymmetric flow by 

where U, is the velocity of the pipe centre and u is the velocity at radius r ,  
it is possible to obtain 28/d as a function of the Reynolds number R when 
the velocity distribution is known. This has been done by Ross (1952) 

Figure 2. Skin friction coefficient against momentum thickness Reynolds number. 

in a re-analysis of Nikuradse's results to yield R, = U,e/v as a function 
of R, and cf = ~,,,/(3pU~) as a function of Re, for turbulent flow. The result 
has been expressed in the form 

cf-lI2 = 3.8 log,, Ro + 4.4. (1) 

cf = QR,. (2) 

This is shown in figure 2 together with the laminar flow relation 

The minimum Reynolds number for which equation ( 1 )  is applicable 
is R = 4.47 x lo3, and the corresponding value of Re is 193. The maximum 
value of Re for laminar flow with very disturbed entry conditions is 87.5, 



376 J.  H. Preston 

3. THE FLOW ALONG A FLAT PLATE 

Of a large number of papers dealing with the problem it is proposed 
in this paper to refer to only three, the paper by Dutton (1956) already 
referred to, and the papers by Landweber (1953) and Coles (1954), both 
of which review much of the existing work on the subject. In  the 
calculation of the growth of the turbulent boundary and the distribution 
of skin friction, both Landweber and Coles start from assumed velocity 
distributions through the boundary layer. 

In a finite region next to the surface, the ‘inner’ law is assumed to 
apply and the velocity u is given by 

where u, = (TW/p)l” and y is the distance from the surface. 
region of the boundary layer, the ‘ outer ’ law applies in the form 

In the outer 

where U is the velocity at the edge y = 6 of the boundary layer. 
The assumption (supported by experiment) that these laws overlap over 

a finite region leads to the well-known logarithmic forms of the equations (3) 
and (4) in this region 

U/U, = A + B log(U,y/v) ( 5 )  

(6) ( U -  u)/u, = C - B log(y/S). 

The ‘ inner ’ law equation (5) is assumed to be universal for all flows, but 
the ‘ outer ’ law for the plate differs from that for the pipe in the value of 
the constant C in equation (6). The assumption of the ‘ inner ’ and ‘ outer ’ 
laws leads in both the plate and pipe problems to unique relations between 
cf and R,. 

In the case of the flat plate flow, the momentum equation 

tcf = d9/dx (7) 
enables the distribution of cf and the growth of 6 to be found for given 
starting conditions of the turbulent flow. ‘The relations between cf and Ro 
as obtained by Landweber and Coles differ because of the different values 
of the constants A, B,  C assumed in the analysis depending on the 
individual assessment of the available experimental results. The relation 
obtained by Coles is utilized in this note because Dutton’s results are close 
to it, and in figure 2 it is given for comparison with that for turbulent flow 
in a pipe, equation (1). The relation for laminar flow over a flat plate 

cf = 0*441Rr1 (8) 
is also plotted. 

The general closeness and similarity of the results for pipe and plate 
i s  rather striking and it Seems reasonable to expect that, as in the case of 
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the pipe, there is a minimum value of R, for turbulent flow along a plate. 
Examination of the results (from various sources) suggests that the minimum 
value of Re for the turbulent boundary layer of a flat plate is about 320 and 
Dutton’s results, which are discussed later, confirm this. 

Now both Landweber and Coles recognized that, in computing the 
boundary layer development along a plate, some initial starting condition 
has to be satisfied as there is aconstant of integration at disposal. Landweber 
in fact restricted his solution to large Reynolds numbers R,, so that the 
starting condition would have negligible effect and he took the constant 
to be zero. Coles fixed the constant by supposing that RB = 0 when R, = 0 
and that the skin friction remains finite. Clearly, the constant of integration 
must be fixed by the value of Re at the transition position and this must 
equal or exceed the value of 320. The value will be fixed by the extent 
of laminar flow and the drag of the transition device. 

Landweber appears to have been the first to recognize that there is a 
limit to the application of the ‘ inner ’ and ‘ outer ’ laws in their logarithmic 
form, since the amount of overlap decreases as the Reynolds number 
decreases. The ‘inner’ law equation (3) 
begins to depart from the logarithmic relation equation (5) as the sub-layer 
is approached and the value of y (= yl) when this occurs is often taken as 
given by 

His argument is as follows. 

uTyl/v = 30. (9) 

The outer law equation (4) has from experimental data a logarithmic 
behaviour as given by equation (6) up to 

y a p  = 0.2. (10) 

These equations specify the degree of overlap of the two laws. If y1 = y ,  
then there is no overlap, and this occurs, from equations (9) and (lo), 
when u,iS/v = 150 or 

loglo(u, a/.) = 2.176. (11) 

Pipe $ow 

gives 
We now apply this idea to turbulent flow in a pipe for which Ross (1952) 

1, (12) 
U/U, = 5.6 + 5*610g1,(~,~/~)  

( U -  u)/u, = 0.785 - 5.6 1og(y/8) 
and, eliminating u, 

U/U,  = (2/~,)’/~ = 6.385 + 5.6  log,,,(^, a/.). (13) 

Inserting the value of logl,(u,6/v) from equation (11) into equation (13), 
we find the ‘no overlap condition gives cf = 0.0058, and from figure 2 
log,, Re = 2.305, giving Re = 202. This limit is marked on figure 2 and 
it is seen that it is very close to the experimental limit for fully developed 
turbulent flow Re = 193, 

F.M. ZB 
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Plate $ow 

Coles’s relations for the velocity distribution in the overlap region are 

U/U, = 5.10 + 5.75 log,,(u,y/v) 
(14) (U- u)/u7 = 2-80 - 5.75 log,,(y/S) 1’ 

and eliminating u 
u/u, = (2/Cf)1/2 = 7.9 + 5.75 l0g1,(u,6/v). 

The ‘no overlap’ condition gives cf = 0.0048, and from figure 2 the 
corresponding value of R, is given by log,, R ,  = 2-59, i.e. R, = 3.89. 
The lowest value of Re in the data considered by Coles for which fully 
developed turbulent flow occurs is 320, which is again close to the RB for 
no overlap of the ‘ inner ’ and ‘ outer ’ regions. 

It is not clear whether much significance should be attached to this 
measure of agreement found for both pipe and plate, owing to the rather 
arbitrary method of defining the limits of the logarithmic region by 
equations (9) and (10). Slightly different choice of constants in these 
equations would yield significantly different values of cf and R, for absence 
of overlap. But it is clear that, at values of R, of this order, the sub-layer 
is now an appreciable part of the boundary layer and the viscous stresses 
are becoming important well away from the wall. Experimentally, it 
seems that when the overlap region vanishes further reduction of Re leads 
to the velocity distribution assuming more and more nearly the character- 
istics of laminar flow with a rapid decrease in skin friction to the laminar 
flow value. 
Dutton’s results 

Dutton’s work was carried out at fairly low Reynolds numbers and 
further evidence of a minimum value of R, for turbulent flow over a flat 
plate can be gleaned from his results. 

Figure 3 is a reproduction of figure 7 of Dutton’s report and shows Re 
as a function of R,  for two transition devices, circular wires and sandpaper 
strips. The curve for laminar flow has been included in figure 3 and the 
increments to Re caused by wire drag have been estimated by the theory 
given in the next section. The estimated total R, immediately behind 
the wires have been plotted on this figure and are made up as shown in 
table 1. 

In discussing these results we note that R ,  for the laminar boundary 
layer just ahead of the wire is 120 and that this is less than the value of 
RB = 162 at which disturbances are first amplified (based on R,* = 420, 
where Rae is the Reynolds number formed by the displacement thickness). 
It is clear from curve (1) for the 0.013 in. wire that laminar flow is still 
persisting up to R,  = 5 x lo5 and that fully developed turbulent flow does 
not occur until R ,  = 8 x lo6. The repeat set for this wire, curve (2), shows 
fully developed turbulent flow at about R, = 3 x lo5, transition presumably 
occurring between there and the wire. The difference between these two 
sets has been explained by Dutton as arising from the sensitivity of the flow 
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at the leading edge of the plate to small changes in tunnel stream direction. 
This has probably resulted in the layer approaching the wire being thicker 
than that predicted by the Blasius theory. We note that, on the basis of 
the Blasius theory and the estimated R, for the 0.013 in. wire, R, behind 
the wire is 201 which is slightly greater than that for amplification to occur 
which is R, = 162. Clearly, we cannot regard this value of R8 as a lower 
limit to the R, for fully developed turbulent flow, since amplification must 
occur before transition occurs and this does not always occur suddenly. 

0.013 

0.022 

R, XIO-* 

Figure 3. Influence of leading edge conditions on the development of the turbulent 

0.713 423 81 201 

0.952 716 244 365 
- 

boundary layer along a flat plate. 

I I I I I 
Wire diameter Total Re 

in inches 1 1 udlu I 1 behind wire 

Table 1. Ro (in front of wire) = 120, d = wire diameter, ud = value of u at y = d. 

In  the case of the larger wire (diameter 0.022 in.) the corresponding curve (3) 
has fully developed turbulent flow characteristics at  the first measuring 
station (R,  = 3.25 x lo5) and it can be extrapolated to the estimated value 
at the wire without difficulty as shown. This suggests that transition occurs 
fairly suddenly at the wire where the estimated R, is 365. Examination of 
Dutton’s curve suggests that a slightly smaller wire than this would still 
have had transition at the wire, so that the previously quoted value of 
Re.= 320, as the lowest value of R, for fully developed turbulent flow, 
is m agreement w i a  the above assessment of Dutton’s results. 

8 B 3  
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The problem of the minimum Reynolds number for fully developed 
turbulent boundary layers under pressure gradients is more difficult as 
there appears to be no experimental evidence available. If we take the 
agreement between the values of R, for ‘ no overlap ’ of the inner and outer 
laws and the minimum values of R, observed for fully developed turbulent 
flow in the case of the pipe and plate and being true generally, then it is 
possible to make some predictions. It is known that the outer limit of the 
logarithmic region in terms of the boundary layer thickness tends to become 
less in adverse pressure gradients, so that y2/S in equation (10) assumes 
smaller values than 0.2. Hence in equation (1 l), the value of u, S/v  for no 
logarithmic region to exist will increase in adverse pressure gradients. 
It is also known that 018 increases progressively towards separation, as 
does U/u,, and hence the value of Ue/v for ‘ no overlap ’ of the inner and 
outer laws will increase. Hence on the basis of the pipe and plate comparisons 
it is expected that the minimum value of Re for a fully developed turbulent 
boundary layer will increase in an adverse pressure gradient and decrease 
in a favourable gradient. 

We have noted, from figure 3 of this paper or figure 7 of Dutton’s paper, 
the very considerable influence of the type and magnitude of the transition 
device on R, in the range of 0 < R,  < 2 x lo6 and the same is true of 
the skin friction given by figure 8 of Dutton’s paper. This is of importance, 
not only in fundamental experiments which are often carried out at low to 
moderate Reynolds numbers, but also in experiments on ships in towing 
tanks when the Reynolds numbers are of the order of 107-2 x lo7. I t  is 
also important for compressor blading of gas turbines at high altitudes, 
when the Reynolds number may be as low as los, and also in experiments 
in small high speed wind tunnels and low speed atmospheric tunnels, 
where Reynolds numbers of the order of lo6 are usual. Another point 
of importance is that, even when transition occurs at the wire, increase 
in its size naturally leads to an increase in drag and of momentum thickness 
downstream, but this increase in drag is not equal to the extra drag of the 
wire. In fact it will be less because, owing to the increased momentum 
thickness behind the wire, the skin friction will be reduced downstream. 
Thus allowance for the drag of the wire in profile drag measurements, 
for example, by subtracting an estimated wire drag is not correct. 

4. TRANSITION DEVICES 

On first thoughts it might appear that the primary function of such 
devices is to produce disturbances which will cause transition from laminar 
to turbulent flow. On this basis we could never hope to establish turbulent 
flow nearer to the leading edge than that position at which disturbances 
in the laminar boundary layer become amplified. In the case of the flat 
plate this distance is given by R, = 6 x lo4, corresponding to R, = 162. 
Clearly any transition device has a drag and as a consequence it increases 
the momentum thickness of the boundary layer flowing over it. The study 
of Dutton’s results in the previous section shows that the drag aspect is 
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all-important when transition close to the leading edge is desired. I t  
appears from Dutton’s results that when R, < 320 (the minimum value 
for a completely turbulent boundary layer) then transition is sudden and 
close to the wire. If Re is less than this behind the wire, laminar flow may 
persist to much higher values of R, and transition take place slowly. 

On the other hand, provided R, < 162, then a transition device producing 
vigorous disturbances in the right range of frequencies ought to start the 
transition almost immediately and this should be complete when R, = 320. 
Also for laminar layers with large R,, (>320), the production of 
vigorous disturbances is the important property. Thus any transition 
device must be considered in terms of both its drag producing and 
disturbance producing potentialities. 

Let us now consider the drag aspect. The drag D per unit span can be 
related to the increase in momentum thickness A0 associated with it by 

D = pU2A0. (16) 
In this expression we ignore any contribution by the friction in the immediate 
wake of the device. Now in the case of circular cylinders immersed in thick 
turbulent boundary layers, Sacks (1956) in an unpublished report found that 

c, = D/(+pu;d) = 0.75 (17) 
over a fairly wide range of u, d/v .  In  this relation ud is the velocity at y = d. 
Hence from equations (16) and (17), 

or 
AOld = $C,(u,/U)’, 

2 Ud -- UAO - heD@) -, 
V V 

1.e. 
AR, = hCD(Ud/U)aR,p (18) 

If is the thickness of the laminar layer in front of the wire and 
if the minimum Re for a fully developed turbulent layer is 320, then 
(RB)& + R8 = 320, or 

From equations (18) and (19), the Reynolds number based on the wire 
diameter is found to be 

R ,  = 320-(R,)fi. (19) 

Rd = (2 /CD)(U/U, )2 {320- (R ,>L: .  (20) 
This equation shows how the size of the transition device is determined 

from momentum considerations. When (Ro)L is small it is clearly necessary 
to provide this increment ARB in momentum thickness by means of the drag. 
When (RB)L > 320, then no additional increase in momentum thickness 
is required, but a transition device is still necessary in order to provide 
disturbances which will cause a rapid transition. 

For a wire placed very close to the leading edge so that (Re)& = 0, 
(ud/U) = 1.0 and, taking C, = 2, R, = U,/v = p x 1 x 320 = 850. 
For a wire placed as in Dutton’s experiments so that (R,)L = 120, 
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we have from laminar boundary layer theory that u,JU = 0.916, and hence 
Rd = 8 x (0.916)-2 x 200 = 636. A recommended figure, based on 
experimental evidence for producing transition at a wire which is placed 
close to the leading edge, is 

which is of the same order. This is further support for the idea of a minimum 
Re for fully developed turbulent flow. 

When the initial (Ro)L >. 320, the function of the transition device is 
to produce disturbances which will bring about transition as close to the 
wire itself as possible and apart from the rough rule equation (Zl ) ,  it is 
not possible to give further guidance in the selection of the size of the wire. 

Circular wires and other bluff obstacles may, as already mentioned, 
be expected to have a large drag coefficient and to produce considerable 
disturbances in the form of cast-off eddies. As regards the drag, Sacks 
(1956) has found the measured drag of circular cylinders resting on the 
surface in a boundary layer to be given by C, = L)/($pu; d )  = 0.75, which is 
about + of that found for cylinders in a uniform stream. Recent experiments 
by Arie & Rouse (1956) on normal plates with a splitter plate placed 
symmetrically behind give C, = 1-38 - 1.4, which again is about # that 
of a normal plate in a uniform stream. Incidentally, there is in this paper 
confirmation of the relation between L) and A8 (equation (16)). On the 
score of drag, the normal plate is to  be preferred to the circular cylinder, 
since, for a given ARB, the size of protuberance will be about half that for 
the circular wire. 

As regards the disturbances (when the obstacle is resting on a wall) 
these do not occur as a regular shedding of eddies in the form of a ‘ Khrman 
street’. A separation ‘ bubble ’, some 6-8 diameters in length, is formed 
behind the obstacle. The bubble is composed, in the main, of one large 
eddy in slow motion, but there is a very disturbed region at the tail of the 
eddy, which presumably feeds disturbances into the boundary layer. 

In  the case of the circular wire, when the value of RB just behind the 
wire is just greater than 162 (the value at which disturbances become 
amplified), it seems that the disturbances are either of the wrong frequency 
or are not sufficiently large to bring about immediate transition. In Dutton’s 
paper there is a good example of this where the laminar layer proceeds a 
considerable distance aft of the wire before transition slowly takes place. 

R d  = 600, (21) 

5. CHOICE OF TRANSITION DEVICES 
Circular wires 

Circular wires have found favour because of their convenience. They 
are available in a wide range of sizes and are accurately manufactured. 
They are fairly easily stuck to the surface, but care is necessary to ensure 
a uniform spanwise height. From what has been said previously their 
size is governed both by their ability to thicken the boundary layer and to 
shed sufficiently strong disturbances. 
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Normal plate or strip 
The use of a thin narrow strip has certain attractions aerodynamically. 

For a given height, it has roughly twice the drag of the circular wire and 
presumably the disturbances it produces will also be stronger. Thus for 
a given increment of AR, it need be only half the height of the wire. The 
fixing would give more trouble than for the wire, as would ensuring 
spanwise uniformity of height. It might be held in a slot in the surface 
and accurately milled down to size. 

Slotted or toothed strip 
With this device the drag might possibly be raised above that of the 

unslotted strip and the teeth would produce strong three-dimensional 
eddies in the outer part of the boundary layer. This, for fundamental 
work, may be a disadvantage, as turbulence produced in this region might 
influence the form of the ‘outer’ velocity distribution in much the same 
way as excessive stream turbulence. In the practical problems of suppressing 
laminar separation by early transition and of delaying turbulent separation 
by vigorous mixing, they have a definite advantage. 

Sandpaper strip 
This has been used to produce a rapid thickening of the boundary 

layer and as a transition device. It has disadvantages for fundamental 
work in that the results with different strips of the same nominal size are 
not always capable of being repeated and it is difficult to ensure spanwise 
uniformity. Also Dutton (1955) has found that the outer velocity distribution 
does not settle to the same distribution as that which occurs when a wire 
is used. Presumably, this is because eddies are shed from the tips of the 
largest spikes and these travel down the outer part of the boundary layer. 

Air jets 
These have been used to promote transition but they cannot be regarded 

as a simple device. There are difficulties in ensuring spanwise uniformity 
and dangers from over-stimulating the outer part of the boundary layer in 
fundamental work. Distributed blowing through a strip of uniformly 
porous material could be effective in thickening a boundary layer. 

6. CONCLUSIONS 
In the case of pipe flow there is a lower experimental limit to the 

Reynolds number for fully developed turbulent flow. From the similarity 
and close agreement between the curves of cf zts Re for both flat plate 
and circular pipe, it was anticipated that there would be a tower limit to 
the Reynolds number Re for fully developed turbulent boundary layer 
flow on a plate. Rather limited experimental information confirms this 
and places the lower limit at R ,  = 320. 

There is also a lower limit to the Reynolds number for which there is 
an overlap of the ‘inner’ and ‘outer’ laws, the logarithmic region. 
Estimates of the Reynolds number agree fairly closely with the limiting 
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Reynolds for turbulent flow in the case of the pipe and flat plate. If this 
agreement is to be expected generally, then, on this basis of ‘ no overlap ’, 
it would seem that the lower limit of R, for fully developed turbulent flow 
should decrease in favourable pressure gradients and increase in adverse 
gradients. 
This concept of a minimum Reynolds number for turbulent flow is 

important when considering the drag of flat plates at medium Reynolds 
numbers and in considering the size of transition device to be used. For 
quick transition near the leading edge, the drag of the device and its ability 
to produce disturbances are both important. An approximate theory has 
been developed on the basis of a minimum R, for turbulent flow which, 
in the case of circular wires, leads to a ‘ wire ’ Reynolds number in fair 
agreement with that suggested by experience. 

As regards the choice of transition devices, the conclusion is that a 
normal strip has the least height to achieve transition, but the circular wire 
is more convenient. When suppression of laminar separation and delay 
of turbulent separation is important, it is thought that a toothed spoiler 
or slotted strip should give good results; but the generation of eddies in 
the outer part of the boundary layer is objectionable in fundamental work, 
as the ‘ outer ’ part of the velocity distribution may be affected. 
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